Efficient pattern matching in degenerate strings with the Burrows–Wheeler transform

Jacqueline W. Daykin^{1,2,3} Richard Groult^{4,3} Yannick Guesnet³ Thierry Lecroq³ Arnaud Lefebvre³ Martine Léonard³ Laurent Mouchard³ Élise Prieur-Gaston³ Bruce Watson^{5,6}

¹ Aberystwyth Univ. (Mauritius Branch Campus), Mauritius
 ² King's College London, UK
 ³ Normandie Univ, UNIROUEN, LITIS, 76000 Rouen, France
 ⁴ Univ. de Picardie Jules Verne, Amiens, France
 ⁵ Stellenbosch Univ., South Africa
 ⁶ CAIR, CSIR Meraka, Pretoria, South Africa

Seqbio 2017, Lille, France, November 7th, 2017

🛿 🖥 🖁

2 Pattern matching in degenerate strings with the BWT

Outline

Pattern matching in degenerate strings with the BWT

Burrow-Wheeler Transform (BWT)

Definition

Let x be a string built on a finite alphabet Σ . The BWT of x is defined as the pair (L, h) where L is the last column of the matrix M_x formed by all the sorted cyclic rotations of x and h is the index of x in this matrix.

Burrow-Wheeler Transform (BWT)

Definition

Let x be a string built on a finite alphabet Σ . The BWT of x is defined as the pair (L, h) where L is the last column of the matrix M_x formed by all the sorted cyclic rotations of x and h is the index of x in this matrix.

$x = \mathtt{BANANA}$												
1	1	В	А	Ν	А	Ν	А					
2	2	Α	Ν	Α	Ν	Α	В					
3	3	Ν	Α	Ν	А	В	А					
4	4	А	Ν	А	В	А	N					
5	5	N	А	В	А	Ν	А					
6	6	А	В	А	N	А	Ν					

Pattern matching in degenerate strings with the BWT Experiments

Burrow-Wheeler Transform (BWT)

Definition

Let x be a string built on a finite alphabet Σ .

The BWT of x is defined as the pair (L, h) where L is the last column of the matrix M_x formed by all the sorted cyclic rotations of x and h is the index of x in this matrix.

x =	$x = \mathtt{BANANA}$														
									SA						BWT
1	1	В	А	N	А	Ν	A	1	6	А	В	А	Ν	А	Ν
2	2	Α	N	Α	N	А	В	2	4	А	N	Α	В	Α	Ν
3	3	Ν	А	Ν	А	В	А	3	2	А	N	А	Ν	Α	В
4	4	А	N	А	В	А	N	4	1	В	А	Ν	А	Ν	А
5	5	N	А	В	А	Ν	А	5	5	Ν	А	В	А	N	А
6	6	А	В	А	N	А	Ν	6	3	Ν	Α	Ν	А	В	Α

BWT(BANANA) = (NNBAAA, 4)

Backward search

Assume

(i,j) is the interval in the SA of a text t of the suffixes of t starting with $p[k+1 .\,.\,m]$ then

(i',j') is the interval in the SA of t of the suffixes of t starting with $p[k_{\cdot}\,.\,m]$ with

$$i' = C[c] + \operatorname{rank}_c(BWT, i-1) + 1$$
 and $j' = C[c] + \operatorname{rank}_c(BWT, j)$

where

 $c = p[k], \ C[c] = \sharp\{i \mid t[i] < c\}$ and

 $rank_c(x,i)$ gives the number of occurrences of the letter c in the prefix x[1..i].

\rightarrow	1	6	А	В	А	N	А	Ν		
	2	4	А	N	А	В	А	Ν		
	3	2	А	Ν	А	N	А	В		
	4	1	В	Α	N	А	N	А		
	5	5	N	А	В	А	N	А		
\rightarrow	6	3	N	Α	Ν	Α	В	А		
(1, 6)	is	the	inter	val	in th	ie SA	۹ of	BAN	ANA of suffixes starting with $arepsilon$	

\rightarrow	1	6	A	В	A	Ν	A	N									
	2	4	А	N	А	В	A	Ν									
\rightarrow	3	2	А	N	А	Ν	А	В									
	4	1	В	А	Ν	А	N	А									
	5	5	Ν	А	В	А	N	А									
	6	3	Ν	А	Ν	А	В	А									
(6, 6)	is	the	inter	val	in th	e S/	A of	BAN	ANA	of	suffix	kes s	starti	ng v	vith	А	

	1	6	A	В	A	N	A	N					
	2	4	А	N	А	В	А	Ν					
	3	2	А	N	А	Ν	А	В					
	4	1	В	А	Ν	А	N	А					
	5	5	Ν	А	В	А	Ν	А					
\Rightarrow	6	3	Ν	А	Ν	А	В	А					
(6, 6)	is	the	inter	val	in th	e SA	۹ of	BANANA	of su	ffixes	starting	g with	NAN

Degenerate strings

Definition

Given an alphabet Σ we define a new alphabet Δ_{Σ} as the non-empty subsets of Σ : $\Delta_{\Sigma} = \mathcal{P}(\Sigma) \setminus \{\emptyset\}$ Singletons are called *solid* letters. *Degenerate* or *indeterminate* strings on an alphabet Σ are strings of Δ_{Σ} .

$$\begin{split} \Sigma &= \{\texttt{a},\texttt{b},\texttt{c},\texttt{d},\texttt{e}\}\\ t &= \{\texttt{c},\texttt{e}\} \cdot \{\texttt{c},\texttt{d}\} \cdot \{\texttt{a},\texttt{b},\texttt{c}\} \cdot \{\texttt{a},\texttt{d}\} \cdot \{\texttt{a},\texttt{b},\texttt{c}\} \end{split}$$

Pattern matching in degenerate strings with the BWT Experiments

Pattern matching on degenerate strings

Definition

Given 2 degenerate strings p and t find all the positions $0 \le j < |t| - |p|$ on t where $p[i] \cap t[i+j] \ne \emptyset$ for $0 \le i < |p|$.

 $p = \{a\} \cdot \{c,d\} \text{ occurs at positions 3 and 4 in}$ $t = \{c,e\} \cdot \{c,d\} \cdot \{a,b,c\} \cdot \{a,d\} \cdot \{a,b,c\}$

Pattern matching in degenerate strings with the BWT Experiments

Pattern matching on degenerate strings

Definition

Given 2 degenerate strings p and t find all the positions $0 \le j < |t| - |p|$ on t where $p[i] \cap t[i+j] \ne \emptyset$ for $0 \le i < |p|$.

 $p = \{a\} \cdot \{c, d\} \text{ occurs at positions 3 and 4 in}$ $t = \{c, e\} \cdot \{c, d\} \cdot \{a, b, c\} \cdot \{a, d\} \cdot \{a, b, c\}$

Pattern matching in degenerate strings with the BWT Experiments

Pattern matching on degenerate strings

Definition

Given 2 degenerate strings p and t find all the positions $0 \le j < |t| - |p|$ on t where $p[i] \cap t[i+j] \ne \emptyset$ for $0 \le i < |p|$.

 $p = \{a\} \cdot \{c,d\} \text{ occurs at positions 3 and 4 in}$ $t = \{c,e\} \cdot \{c,d\} \cdot \{a,b,c\} \cdot \{a,d\} \cdot \{a,b,c\}$

Burrows-Wheeler transform on degenerate strings (D-BWT)

Given an order on Δ_{Σ} denoted by the usual symbol <, we can compute the BWT of a degenerate string x in the same way as for a regular string.

$$t = \{c, e\} \cdot \{c, d\} \cdot \{a, b, c\} \cdot \{a, d\} \cdot \{a, b, c\}$$

$$A = \{a, b, c\}, B = \{a, d\}, C = \{c, d\}, D = \{c, e\}$$

$$A < B < C < D$$

$$\stackrel{1}{1} D C A B A \qquad \stackrel{1}{3} A B A D B$$

$$\stackrel{2}{2} A D C A B \qquad \stackrel{2}{2} 1 A D C A C$$

$$\stackrel{3}{3} B A D C A \qquad \stackrel{3}{3} 4 B A D A D$$

$$\stackrel{4}{4} A B A D C \qquad \stackrel{4}{2} 2 C A B B A$$

Burrows-Wheeler transform on degenerate strings (D-BWT)

Jacqueline W. Daykin and Bruce Watson
 A Text Transformation Scheme for Degenerate Strings
 Proceedings of the 2nd International Conference on Algorithms for
 Big Data, Palermo, Italy, April 07-09, 2014 pp 23–29

Jacqueline W. Daykin and Bruce Watson Indeterminate String Factorizations and Degenerate Text Transformations

Mathematics in Computer Science 11(2) (2017) 209–218

Represent a collection of genomes called *reference multi-genome* and do pattern matching

BWBBLE

SNPs (aka SNVs or substitutions)

4-letter alphabet {A, C, G, T} \rightarrow 16-letter IUPAC encoding \rightarrow 4-bit Gray code (to minimize \sharp separate intervals during the search with the BWT)

Indels (insertions-deletions)

Corresponding sequences padded with surrounding bases (length depending on read length) are concatenated at the end of the reference multi-genome (separated by a special character)

Inversions, translocations and duplications

only both ends of the events are concatenated at the end of the reference multi-genome

Outline

2 Pattern matching in degenerate strings with the BWT

Backward search on the D-BWT: formalization

$$p \quad \boxed{c}$$

$$OneStep(H, k, C, BWT = (L, h), p) =$$

$$(((r, s)) \quad | \quad r = C[c] + rank_c(L, i - 1) + 1,$$

$$s = C[c] + rank_c(L, j),$$

$$r \leq s, (i, j) \in H, c \in \Delta_{\Sigma} \text{ and } c \cap p[k] \neq \emptyset).$$

Let $Step(m, C, BWT, p) = OneStep(\{(1, n)\}, m, C, BWT, p)$ and Step(i, C, BWT, p) = OneStep(Step(i + 1, C, BWT, p), i, C, BWT, p) for $1 \le i \le m - 1$.

In words, Step(i,C,BWT,p) applies step m through to i of the backward search.

Then Step(1, C, BWT, p) contains the intervals in the SA of t of the suffixes of t starting with p.

Backward search on the D-BWT: correctness

Lemma

The interval $(i, j) \in \text{Step}(k, C, \text{BWT}, p)$ if and only if p[k ...m] is a degenerate prefix of $M_t[h]$ for $i \leq h \leq j$.

Corollary

The interval $(i, j) \in \text{Step}(1, C, \text{BWT}, p)$ if and only if p is a degenerate prefix of $M_t[h]$ for $i \leq h \leq j$.

Intervals do not overlap

Lemma

The intervals in $OneStep(\{(i, j)\}, k, C, BWT, p)$ do not overlap.

Intervals do not overlap

$$t = \{c, e\} \cdot \{c, d\} \cdot \{a, b, c\} \cdot \{a, d\} \cdot \{a, b, c\}$$

$$A = \{a, b, c\}, B = \{a, d\}, C = \{c, d\}, D = \{c, e\}$$

$$A < B < C < D$$

$$p = \{c\} \cdot \{d\} \cdot \{b\}$$

$$b \in A \text{ and } d \in B, C$$

$$\rightarrow \begin{array}{c} 1 & 3 & A & B & A & D & C \\ \rightarrow & 2 & 5 & A & D & C & A \\ & 3 & 4 & B & A & D & C & A \\ & 4 & 2 & C & A & B & A & D \\ & 5 & 1 & D & C & A & B & A \end{array}$$

Intervals do not overlap

$$t = \{c, e\} \cdot \{c, d\} \cdot \{a, b, c\} \cdot \{a, d\} \cdot \{a, b, c\}$$

$$A = \{a, b, c\}, B = \{a, d\}, C = \{c, d\}, D = \{c, e\}$$

$$A < B < C < D$$

$$p = \{c\} \cdot \{d\} \cdot \{b\}$$

$$b \in A \text{ and } d \in B, C$$

$$1 \quad 3 \quad A \quad B \quad A \quad D \quad C$$

$$2 \quad 5 \quad A \quad D \quad C \quad A \quad B$$

$$\Rightarrow \quad 3 \quad 4 \quad B \quad A \quad D \quad C \quad A$$

$$\Rightarrow \quad 4 \quad 2 \quad C \quad A \quad B \quad A \quad D$$

$$5 \quad 1 \quad D \quad C \quad A \quad B \quad A$$

Intervals do not overlap

Lemma

The intervals in $OneStep(\{(i, j), (i', j')\}, k, C, BWT, p)$ with $i \leq j < i' \leq j'$ do not overlap.

Corollary

Let H be a set of non-overlapping intervals. The intervals in OneStep(H, k, C, BWT, p) do not overlap.

Intervals do not overlap

$$t = \{c, e\} \cdot \{c, d\} \cdot \{a, b, c\} \cdot \{a, d\} \cdot \{a, b, c\}$$

$$A = \{a, b, c\}, B = \{a, d\}, C = \{c, d\}, D = \{c, e\}$$

$$A < B < C < D$$

$$p = \{c\} \cdot \{d\} \cdot \{b\}$$

$$b \in A, d \in B, C \text{ and } c \in A, D$$

$$\stackrel{1}{=} 3 \quad A \quad B \quad A \quad D \quad C$$

$$\stackrel{2}{=} 5 \quad A \quad D \quad C \quad A \quad B$$

$$\Rightarrow \quad 3 \quad 4 \quad B \quad A \quad D \quad C \quad A$$

$$\Rightarrow \quad 4 \quad 2 \quad C \quad A \quad B \quad A \quad D$$

$$_{5} \quad 1 \quad D \quad C \quad A \quad B \quad A$$

Intervals do not overlap

Consecutive intervals can merge

Lemma

$$\begin{split} \textit{Merge}(\textit{OneStep}(((i,j),(j+1,j')),k,C,\textit{BWT},p)) = \textit{OneStep}(((i,j')),k,C,\textit{BWT},p). \end{split}$$

Consecutive intervals can merge

Consecutive intervals can merge

Consecutive intervals can merge

$$t = \{c, e\} \cdot \{c, d\} \cdot \{a, b, c\} \cdot \{a, d\} \cdot \{a, b, c\}$$

$$A = \{a, b, c\}, B = \{a, d\}, C = \{c, d\}, D = \{c, e\}$$

$$A < B < C < D$$

$$b \in A, d \in B, C \text{ and } c \in A, D$$

$$\Rightarrow \ _{1} \ _{3} \ A \ B \ A \ D \ C \ A \ B$$

$$a + B \ A \ D \ C \ A$$

$$a + 2 \ C \ A \ B \ A \ D$$

$$\Rightarrow \ _{5} \ _{1} \ D \ C \ A \ B \ A$$

Pattern matching in conservative degenerate strings

A degenerate string is said to be *conservative* if its number of non-solid letters is upper-bounded by a fixed positive constant q.

Theorem

Let t be a conservative degenerate string over a constant size alphabet. Let the number of degenerate letters of t be bounded by a constant q. Then given the BWT of t, all the intervals in the BWT of occurrences of a pattern p of length m can be detected in time $O(qm^2)$.

Outline

Pattern matching in degenerate strings with the BWT

Experiments

DBWT

Experiments

Intervals

DBW

Perspectives

- Average case analysis
- Efficient data structure for handling intervals
- Using different order on the alphabet
- o . . .

Thank you for your attention!