Normal sequences, sequences of complexity 2n + 1 and continued fractions algorithms

Gilles Didier

Institut de Mathématiques de Marseille Aix-Marseille Université

Seqbio 2017

Lille - November 7th 2017

Sturmian sequences

sequence u = infinite word over a finite alphabet complexity: $p_{ij}(n)$ = the number of distinct words of length n in u

If $p_u(n) \leq n$ then u is ultimately periodic

A sequence u is Sturmian if $p_u(n) = n + 1$

01001010010010100101001001001001001...

Generating Sturmian sequences

$$\lim_{n\to\infty} \sigma_0^{a_1} \sigma_1^{a_2} \dots \sigma_0^{a_{2n}} \sigma_1^{a_{2n+1}}(0)$$

is Sturmian with frequencies
$$(\alpha,1-\alpha)$$
 where $\alpha=\dfrac{1}{a_1+\dfrac{1}{a_2+\dfrac{1}{\dots}}}$

Since letters of (ultimately) periodic sequences have rational frequencies, Sturmian sequences are the simplest class of two-letters sequences in which we can observe all non-trivial frequencies.

Three-letters sequences with arbitrary frequencies (α, β, γ)

Such sequences u have at least complexity $p_u(n) = 2n + 1$

We already know

- ► Codings of rotations over three intervals
- Arnoux-Rauzy sequences
- Cassaigne sequences

All the sequences just above

- ▶ can be generated by applying morphisms following some multidimensional continued fraction representation of (α, β, γ)
- ► fulfill a combinatoric property : they are *normal*

((normal) bi-) Special words

w is *right-special* if u = ...wx...wy... for two letters $x \neq y$; w = w is *left-special* if u = ...aw...bw... for two letters $a \neq b$; a = w b = w b = w is *bi-special* if it is both left- and right-special

If w is bi-special $\frac{a}{b}w$ and $w\frac{x}{y}$ then it may be either:

- weak : both aw and bw are not right-special e.g., only awx and bwy occur in u
- normal: only one word among aw and bw is right-special
- ► strong : both aw_y^X and bw_y^X

u is normal if all its bi-special words are normal

Return words

A *return word* over w in u is word of u which starts with w and ends just before the next occurrence of w in u

$$u = \dots \underbrace{\widetilde{w} \underbrace{\dots}_{\text{no } w}}_{\text{no } w} \dots$$

If the set of return words R over w is finite : $R = \{r_1, r_2, \ldots, r_p\}$, the morphism associated to R is the map $\rho : \{1, 2, \ldots, p\} \to \mathcal{A}^+$ such that $\rho(i) = r_i$ for all $1 \le i \le p$.

In this case, up to a finite prefix, there exists a sequence v over alphabet $\{1, 2, \dots, p\}$ such that $u = \rho(v)$

Normal sequences and return words

Let u be a normal sequence.

Theorem

There exists a nonnegative integer S, which will be referred to as the increment of u, s. t. for all n > 0, $p_u(n) = Sn + |A| - S$.

Let u be a normal sequence of increment S.

Theorem

For all words w of u, there are exactly S+1 return words over w.

Theorem

Let w be a word of u and ρ the morphism of its return words, up to a finite prefix, we have $u = \rho(v)$ where v is a normal sequence of increment S over an alphabet of cardinality S+1.

Let ρ be a morphism of return words of any normal sequence of increment S and u a normal sequence of increment S with complexity Sn+1 then $\rho(u)$ is a normal sequence of increment S.

Sequences of complexity 2n + 1

Proposition

The graph of words of length 1 of a sequence u of complexity 2n+1 is, up to renaming its letters, one of those displayed above. The letter frequencies $f_u(a)$, $f_u(b)$, $f_u(c)$ satisfy :

- for graph 1, $f_u(a) < \min\{f_u(b), f_u(c)\}$,
- for graph 2, $f_u(b) < f_u(a) < f_u(c)$,
- for graph 3, $f_u(c) < f_u(a) < f_u(b)$,
- for graphs 4 and 5, $f_u(a) > \max\{f_u(b), f_u(c)\}$,
- for graph 6, $f_u(c) < f_u(a) < f_u(b) + f_u(c)$,
- for graph 7, $f_u(b) = f_u(c)$.

Normal sequences of complexity 2n + 1

Such sequences have increment 2 thus always 3 return words

The *incidence matrix* of morphism $\sigma: \mathcal{B} \to \mathcal{A}$ is the $\mathcal{A} \times \mathcal{B}$ matrix $M^{(\sigma)}$ where entry $M_{a,x}^{(\sigma)}$ is the number of occurrences of a in $\sigma(x)$

$$\sigma: egin{array}{cccccc} a &
ightarrow & ab \ b &
ightarrow & b \end{array}, \quad M^{(\sigma)} = egin{array}{cccc} \sigma(a) & \sigma(b) \ 1 & 0 \ 1 & 1 \end{array}$$

If $u = \sigma(v)$ letter frequencies of u and v are related through $M^{(\sigma)}$

Theorem

Incidence matrices of morphisms associated to return words over letters of normal sequences of complexity 2n + 1 with graph 1 to 6 are unimodular (i.e., have determinant 1 or -1). Those with graph 7 are not inversible.

4□ > 4□ > 4□ > 4□ > 4□ > 4□ > 9

Normal sequences of complexity 2n + 1

If u is a normal sequence of complexity 2n + 1 with graph 1,

▶ its return words over *a* are one of the following sets

$$ightharpoonup$$
 ab^kc^ℓ , $ab^kc^{\ell+1}$, $ab^{k+1}c^\ell$,

$$ightharpoonup$$
 ab^kc^ℓ , $ab^kc^{\ell+1}$, $ab^{k+1}c^{\ell+1}$

$$ightharpoonup ab^{k+1}c^{\ell}$$
, $ab^{k+1}c^{\ell+1}$, ab^kc^{ℓ} ,

•
$$ab^{k+1}c^{\ell}$$
, $ab^{k+1}c^{\ell+1}$, $ab^kc^{\ell+1}$;

- ▶ its return words over b are
 - b, $bc^{\ell}a$, $bc^{\ell+1}a$;
- ▶ its return words over c are

$$ightharpoonup c$$
, cab^k , cab^{k+1} ;

where
$$k = \left\lfloor \frac{\mathrm{f}_u(b)}{\mathrm{f}_u(a)} \right\rfloor$$
 and $\ell = \left\lfloor \frac{\mathrm{f}_u(c)}{\mathrm{f}_u(a)} \right\rfloor$.

The incidence matrix of the morphism associated to $\{ab^kc^\ell,ab^kc^{\ell+1},ab^{k+1}c^\ell\}$ is

$$\left(\begin{array}{ccc}
1 & 1 & 1 \\
k & k & k+1 \\
\ell & \ell+1 & \ell
\end{array}\right)$$

Normal sequences of complexity 2n + 1

Theorem

Let (α, β, γ) be a frequency vector of rational independent entries. The set of normal sequences of complexity 2n+1 with letter frequencies α , β and γ is uncountable.

$$\alpha < \beta < \gamma$$

$$f_u(a) = \alpha$$

$$f_u(b) = \beta$$

$$f_u(c) = \gamma$$

$$f_u(a) = \beta$$

 $f_u(b) = \alpha$
 $f_u(c) = \gamma$

$$f_{u}(a) = \beta$$

$$f_{u}(b) = \gamma$$

$$f_{u}(c) = \alpha$$

$$f_u(a) = \gamma$$

$$f_u(b) = \alpha$$

$$f_u(c) = \beta$$

$$f_u(a) = \gamma$$

 $f_u(b) = \alpha$
 $f_u(c) = \beta$

$$f_u(a) = \beta
f_u(b) = \gamma
f_v(c) = \alpha$$

$$\alpha, \beta, \gamma$$
 rationally independent \Rightarrow

